
Introduction to Java Applications and
Applets

Outline
1 Introduction
2 Basics of a Typical Java Environment
3 General Notes about Java and This Book
4 A Simple Program: Printing a Line of Text
5 Another Java Application: Adding Integers
6 Sample Applets from the Java 2 Software

Development Kit
7 A Simple Java Applet: Drawing a String
8 Two More Simple Applets: Drawing Strings and Lines
9 Another Java Applet: Adding Integers

1 Introduction

• Java
– Powerful, object-oriented language
– Fun to use for beginners, appropriate for experience

programmers
– Language of choice for Internet and network

communications

• In the Java ,we discuss
– Graphics (and graphical user interfaces [GUI])
– Multimedia
– Event-driven programming

2 Basics of a Typical Java Environment

• Java Systems
– Consist of environment, language, Java Applications

Programming Interface (API), Class libraries

• Java programs have five phases
– Edit

• Use an editor to type Java program
• vi or emacs, notepad, Jbuilder, Visual J++
• .java extension

– Compile
• Translates program into bytecodes, understood by Java

interpreter
• javac command: javac myProgram.java
• Creates .class file, containing bytecodes

(myProgram.class)

2 Basics of a Typical Java Environment
(II)

• Java programs have five phases (continued)
– Loading

• Class loader transfers .class file into memory
– Applications - run on user's machine
– Applets - loaded into Web browser, temporary

• Classes loaded and executed by interpreter with java command
java Welcome

• HTML documents can refer to Java Applets, which are loaded
into web browsers. To load,
appletviewer Welcome.html
– appletviewer is a minimal browser, can only interpret

applets

2 Basics of a Typical Java Environment
(II)

• Java programs have five phases (continued)
– Verify

• Bytecode verifier makes sure bytecodes are valid and do not
violate security

• Java must be secure - Java programs transferred over networks,
possible to damage files (viruses)

– Execute
• Computer (controlled by CPU) interprets program one

bytecode at a time
• Performs actions specified in program

– Program may not work on first try
• Make changes in edit phase and repeat

Program is created in
the editor and stored
on disk.

Compiler creates
bytecodes and stores
them on disk.

Class loader puts
bytecodes in memory.

Bytecode verifier
confirms that all
bytecodes are valid
and do not violate
Java’s security
restrictions.

Interpreter reads
bytecodes and
translates them into a
language that the
computer can
understand, possibly
storing data values as
the program executes.

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

DiskEditor

Compiler

Class Loader

Disk

Disk

Primary
Memory

.

.

.

.

.

.

Primary
Memory

.

.

.

.

.

.

Primary
Memory

.

.

.

.

.

.

Bytecode Verifier

Interpreter

3 General Notes about Java

• Java
– Powerful language
– Programming

• Clarity - Keep it Simple
• Portability - Java portable, but it is an elusive goal

– Some details of Java not covered
• http://java.sun.com for documentation

– Performance
• Interpreted programs run slower than compiled ones

– Compiling has delayed execution, interpreting executes
immediately

• Can compile Java programs into machine code
– Runs faster, comparable to C / C++

3 General Notes about Java

• Just-in-time compiler
– Midway between compiling and interpreting

• As interpreter runs, compiles code and executes it
• Not as efficient as full compilers

– Being developed for Java
– Integrated Development Environment (IDE)

• Tools to support software development
• Several Java IDE's are as powerful as C / C++ IDE's

4 A Simple Program: Printing a Line of
Text

• Application
– Program that runs using Java interpreter (discussed later)

– Comments
• Java uses C-style // (preferred by Java programmers)
• Can also use /* ... */

1 // Fig.2: Welcome1.java
2 // A first program in Java
3
4 public class Welcome1 {
5 public static void main(String args[])
6 {
7 System.out.println("Welcome to Java Programming!");
8 }
9 }

4 A Simple Program: Printing a Line of
Text (II)

• public class Welcome1 {
– Begins class definition
– Every Java program has a user-defined class
– Use keyword (reserved word) class followed by
ClassName

• Name format - MyClassName
• Identifier - letters, digits, underscores, dollar signs, does not begin with

a digit, contains no spaces
• Java case sensitive

– public - For Chapters 1 and 25, every class will be
public

• Later, discuss classes that are not (Chapter 26)
• Programmers initially learn by mimicking features. Explanations

come later.
– When saving a file, class name must be part of file name

• Save file as Welcome1.java

4 A Simple Program: Printing a Line of
Text (III)

• Braces
– Body - delineated by left and right braces

• Class definitions
• public static void main(String args[])

– Part of every Java application
• Program begins executing at main
• Must be defined in every Java application

– main is a method (a function)
– void means method returns nothing

• Many methods can return information
– Braces used for method body
– For now, mimic main's first line

4 A Simple Program: Printing a Line of
Text (IV)

• System.out.println("Welcome to Java
Programming!");

– Prints string
• String - called character string, message string, string literal
• Characters between quotes a generic string

– System.out - standard output object
• Displays information in command window

– Method System.out.println
• Prints a line of text in command window
• When finished, positions cursor on next line

– Method System.out.print
• As above, except cursor stays on line
• \n - newline

– Statements must end with ;

4 A Simple Program: Printing a Line of
Text (V)

• Executing the program
– javac Welcome1

• Creates Welcome1.class (containing bytecodes)
– java Welcome1

• Interprets bytecodes in Welcome1.class (.class left out
in java command)

• Automatically calls main

• Output types
– Command window
– Dialog box / Windows

4 A Simple Program: Printing a Line of
Text (VI)

• Packages
– Predefined, related classes grouped by directories on disk

• All in directory java or javax, or subdirectories
– Referred to collectively as the Java class library or the Java

applications programming interface (Java API)
– import - locates classes needed to compile program

• Class JOptionPane
– Defined in package called javax.swing

• Contains classes used for a graphical user interface (GUI)
– Facilitates data entry and data output

• import javax.swing.JOptionPane;

4 A Simple Program: Printing a Line of
Text (VII)

• Class JOptionPane
– Contains methods that display a dialog box

• static method showMessageDialog
• First argument - null (more Chapter 29)
• Second argument - string to display

• static methods
– Called using dot operator (.) then method name

JOptionPane.showMessageDialog(arguments);
– exit - method of class System

• Terminates application, required in programs with GUIs
System.exit(0);
0 - normal exit
non-zero - signals that error occurred

– Class System in package java.lang
• Automatically imported in every Java program

1. import statement

2. Define class

3. main

4.
JOptionPane.showMe
ssageDialog

5. System.exit

Program Output

1 // Fig. 4: Welcome2.java
2 // Printing multiple lines in a dialog box
3 import javax.swing.JOptionPane; // import class JOptionPane
4
5 public class Welcome2 {
6 public static void main(String args[])
7 {
8 JOptionPane.showMessageDialog(
9 null, "Welcome\nto\nJava\nProgramming!");
10
11 System.exit(0); // terminate the program
12 }
13 }

5 Another Java Application: Adding
Integers

• Variables
– Locations in memory that hold data
– Must be declared with name and data type before use

• Primitive data types (keywords): boolean, char, byte,
short, int, long, float, double (details in Chapter 25)

• String (java.lang) - hold strings: "Hi" "37"
• int - holds integers: -1, 0, 15

– Name format - first letter lowercase, new word capitalized
• myVariable, myOtherVariable

– Declarations: specify name and type
• Can have multiple variables per declaration
• int myInt, myInt2, myInt3;
• String myString, myString2;

5 Another Java Application: Adding
Integers (II)

• Method showInputDialog
– Of class JOptionPane
– Displays prompt (gets user input)

• Argument - Text to display in prompt
– Java does not have a simple form of input

• Nothing analogous to System.out.print
– Returns what user input

• Assign input to a variable using assignment operator =
myString = JOptionPane.showInputDialog("Enter an

integer");

• = has two operands (binary operator)
– Expression on right evaluated, assigned to variable on left

5 Another Java Application: Adding
Integers (III)

• Integer.parseInt
– static method of class Integer
– Input from showInputDialog a String

• Want to convert it into an integer
• parseInt takes a String, returns an integer
myInt = Integer.parseInt(myString);
• Note assignment operator

• The + operator
– String concatenation - "adding" strings

"Hello" + " there " same as "Hello there"

– Print variables
"myInt has a value of: " + myInt

– Used for addition, as in C / C ++:
• sum = int1 + int2;

5 Another Java Application: Adding
Integers (III)

• showOptionDialog
– Another version
– First argument: null
– Second: message to display
– Third: string to display in title bar
– Fourth: type of message to display

• JOptionPane.PLAIN_MESSAGE
• Other types in Fig. 24.7

1. import

2. main

2.1 Declare variables

2.2 showInputDialog

2.3 Assign input to
firstNumber

2.4 Repeat for
secondNumber

2.5 Convert Strings
to ints

2.6 Sum the numbers

1 // Fig. 6: Addition.java
2 // An addition program
3
4 import javax.swing.JOptionPane; // import class JOptionPane
5
6 public class Addition {
7 public static void main(String args[])
8 {
9 String firstNumber, // first string entered by user
10 secondNumber; // second string entered by user
11 int number1, // first number to add
12 number2, // second number to add
13 sum; // sum of number1 and number2
14
15 // read in first number from user as a string
16 firstNumber =
17 JOptionPane.showInputDialog("Enter first integer");
18
19 // read in second number from user as a string
20 secondNumber =
21 JOptionPane.showInputDialog("Enter second integer");
22
23 // convert numbers from type String to type int
1 number1 = Integer.parseInt(firstNumber);
25 number2 = Integer.parseInt(secondNumber);
26
27 // add the numbers
28 sum = number1 + number2;
29
30 // display the results

2.7 Use
showMessageDialog
to display results

Program Output

31 JOptionPane.showMessageDialog(

32 null, "The sum is " + sum, "Results",

33 JOptionPane.PLAIN_MESSAGE);

34

35 System.exit(0); // terminate the program

36 }

37 }

6 Sample Applets from the Java 2
Software Development Kit

• Applet
– Program that runs in

• appletviewer (test utility for applets)
• Web browser (IE, Communicator)

– Executes when HTML document containing applet is
opened

• Sample Applets
– Provided in Java 2 Software Development Kit (J2SDK)
– Source code included (.java files)
– Located in demo directory of J2SDK install

6 Sample Applets from the Java 2
Software Development Kit

• Running applets
– In command prompt, change to subdirectory of applet
cd directoryName

– There will be an HTML file used to execute applet
– type appletviewer example1.html
– Applet will run, Reload and Quit commands under Applet

menu

• Example applets
– Tic-Tac-Toe
– Drawing programs
– Animations
– See Fig. 24.8

7 A Simple Java Applet: Drawing a String

• Create our own applet
– Print "Welcome to Java Programming!"
– import javax.swing.JApplet

• Needed for all applets
– import java.awt.Graphics

• Allows program to draw graphics (lines, ovals, text) on an
applet

– Like applications, applets have at least one class definition

• Rarely create applets from scratch
– Use pieces of class existing definitions
public class WelcomeApplet extends JApplet {
– extends ClassName - class to inherit from

• In this case, inherit from class JApplet

7 A Simple Java Applet: Drawing a String
(II)

• Inheritance
– JApplet is superclass (base class)
– WelcomeApplet is subclass (derived class)
– Derived class inherits data and methods of base class

• Can add new features to derived class
– Benefits

• Someone else has already defined what an applet is
– Applets require over 200 methods to be defined!
– By using inheritance, all those methods are now ours

• We do not need to know all the details of JApplet

7 A Simple Java Applet: Drawing a String
(III)

• Classes
– Templates/blueprints create or instantiate objects

• Objects - locations in memory to store data
• Implies that data and methods associated with object

• Methods
– paint, init, and start called automatically for all

applets
• Get "free" version when you inherit from JApplet
• By default, have empty bodies
• Must override them and define yourself

7 A Simple Java Applet: Drawing a String
(IV)

• Method paint
– Used to draw graphics, define:
public void paint(Graphics g)

• Takes a Graphics object g as a parameter
• For now, all method definitions begin with public

– Call methods of object g to draw on applet
drawString("String to draw", x, y);
• Draws "String to draw" at location (x,y)

– Coordinates specify bottom left corner of string
– (0, 0) is upper left corner of screen
– Measured in pixels (picture elements)

7 A Simple Java Applet: Drawing a String
(IV)

• Create the HTML file (.html or .htm)
– Many HTML codes (tags) come in pairs

<myTag> ... </myTag>
– Create <HTML> tags with <applet> tags inside
– appletviewer only understands <applet> tags

• Minimal browser
• Specify complied .class file, width, and height of applet (in

pixels)
<applet code = "WelcomeApplet.class" width = 300

height = 30>
• Close tag with </applet>

• Running the applet
appletviewer WelcomeApplet.html

1. import

2. Define class
(extends JApplet)

2.1 Override paint

2.2 g.drawString

HTML file

Output

1 // Fig. 13: WelcomeApplet.java

2 // A first applet in Java

3 import javax.swing.JApplet; // import class JApplet

4 import java.awt.Graphics; // import class Graphics

5

6 public class WelcomeApplet extends JApplet {

7 public void paint(Graphics g)

8 {

9 g.drawString("Welcome to Java Programming!", 25, 25);

10 }

11 }

1 <html>

2 <applet code="WelcomeApplet.class" width=300 height=30>

3 </applet>

4 </html>4 </html>

8 Two More Simple Applets: Drawing
Strings and Lines

• Other methods of class Graphics
– No concept of lines of text, as in System.out.println

when drawing graphics
– To print multiple lines, use multiple drawString calls
– drawLine(x1, y2, x2, y2) ;

• Draws a line from (x1, y1) to (x2, y2)

1. import

2. Define class
(extends JApplet)

2.1 Override paint

Program Output

1 // Fig. 17: WelcomeLines.java
2 // Displaying text and lines
3 import javax.swing.JApplet; // import class JApplet
4 import java.awt.Graphics; // import class Graphics
5
6 public class WelcomeLines extends JApplet {
7 public void paint(Graphics g)
8 {
9 g.drawLine(15, 10, 210, 10);
10 g.drawLine(15, 30, 210, 30);
11 g.drawString("Welcome to Java Programming!", 25, 25);
12 }
13 }

9 Another Java Applet: Adding Integers

• Next applet mimics program to add two integers
– This time, use floating point numbers

• Can have decimal point, 6.7602
• float - single precision floating point number (7 significant

digits)
• double - approximately double precision floating point

number (15 significant digits)
– Uses more memory

– Use showInputDialog to get input, as before
– Use Double.parseDouble(String)

• Converts a String to a double

9 Another Java Applet: Adding Integers
(II)

• import statements
– Not necessary if specify full class name every time needed
public void paint(java.awt.Graphics g)
– * - indicates all classes in package should be available

• import java.swing.*;
– Recall that this contains JApplet and JOptionPane

• Does not import subdirectories

• Instance variables
– Variables declared in body of a class (not in a method)

• Each object of class gets its own copy
• Can be used inside any method of the class

– Before, variables declared in main
• Local variables, known only in body of method defined

9 Another Java Applet: Adding Integers
(III)

• Instance variables
– Have default values

• Local variables do not, and require initialization before use
• Good practice to initialize instance variables anyway

• Method init
– Called automatically in all applets
– Commonly used to initialize variables
public void init()

• References
– Identifiers (such as myString) refer to objects

• Contain locations in memory
– References used to call methods, i.e. g.drawString

9 Another Java Applet: Adding Integers
(III)

• Variables vs. Objects
– Variables

• Defined by a primitive data type
• char, byte, short, int, long, float, double,
boolean

• Store one value at a time
• Variable myInt

– Objects defined in classes
• Can contain primitive (built-in) data types
• Can contain methods
• Graphics object g

– If data type a class name, then identifier is a reference
• Otherwise, identifier is a variable

9 Another Java Applet: Adding Integers
(IV)

• Other methods of class Graphics
– drawRect(x1, y1, x2, y2);
– Draws a rectangle with upper-left corner (x1, y1), and

lower right corner (x2, y2)

1. import (note *)

2. Define class
(extends JApplet)

2.1 init

2.2 Declare variables

2.3 Input

2.4 Convert String to
double

1 // Fig. 19: AdditionApplet.java
2 // Adding two floating-point numbers
3 import java.awt.Graphics; // import class Graphics
4 import javax.swing.*; // import package javax.swing
5
6 public class AdditionApplet extends JApplet {
7 double sum; // sum of the values entered by the user
8
9 public void init()
10 {
11 String firstNumber, // first string entered by user
12 secondNumber; // second string entered by user
13 double number1, // first number to add
14 number2; // second number to add
15
16 // read in first number from user
17 firstNumber =
18 JOptionPane.showInputDialog(
19 "Enter first floating-point value");
20
21 // read in second number from user
22 secondNumber =
23 JOptionPane.showInputDialog(
1 "Enter second floating-point value");
25
26 // convert numbers from type String to type double
27 number1 = Double.parseDouble(firstNumber);
28 number2 = Double.parseDouble(secondNumber);
29
30 // add the numbers

2.5 sum numbers

2.6 paint

2.7 drawRect

2.8 drawString

HTML file

31 sum = number1 + number2;

32 }

33

34 public void paint(Graphics g)

35 {

36 // draw the results with g.drawString

37 g.drawRect(15, 10, 270, 20);

38 g.drawString("The sum is " + sum, 25, 25);

39 }

40 }

1 <html>

2 <applet code="AdditionApplet.class" width=300 height=50>

3 </applet>

4 </html>4 </html>

Program Output

